The 2023 World Congress on Advances in Structural Engineering and Mechanics (ASEM23) GECE, Seoul, Korea, August 16-18, 2023

Self-heating electrically conductive cement composites

*Seongwoo Gwon¹⁾ and Myoungsu Shin²⁾

1) School of Civil and Environmental Engineering, Hankyong National University, Anseong-si, Gyeonggi-do 17579, Korea

1) ksw4430@hknu.ac.kr

²⁾ Department of Civil and Environmental Engineering, UNIST, Ulsan 44919, Korea
²⁾ msshin@unist.ac.kr

ABSTRACT

Electrically conductive cement composites (ECCCs) contain conductive agents to efficiently form electrically conductive pathways in matrix. This study employed carbon black and carbon fiber as the major conductive agents. Among all the mixtures examined before, a representative ECCC mixture was investigated under three curing conditions (depending on temperature and humidity), rendering different microstructural and thermal properties leading to varying voltage-connected self-heating capacity. This study suggests how the 24-h self-heating performance of ECCCs can be conserved.

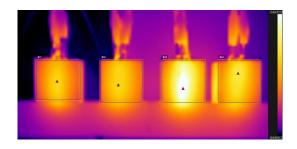


Fig. 1 Thermal image of voltage-connected ECCCs

REFERENCES

Gwon, S., Kim, H., and Shin, M. (2023), "Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber", Cem. Concr. Compos., **137**, 104942.

¹⁾ Assistant Professor

²⁾ Professor